Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study.

نویسندگان

  • T Paus
  • P K Sipila
  • A P Strafella
چکیده

Using multichannel electroencephalography (EEG), we investigated temporal dynamics of the cortical response to transcranial magnetic stimulation (TMS). TMS was applied over the left primary motor cortex (M1) of healthy volunteers, intermixing single suprathreshold pulses with pairs of sub- and suprathreshold pulses and simultaneously recording EEG from 60 scalp electrodes. Averaging of EEG data time locked to the onset of TMS pulses yielded a waveform consisting of a positive peak (30 ms after the pulse P30), followed by two negative peaks [at 45 (N45) and 100 ms]. Peak-to-peak amplitude of the P30-N45 waveform was high, ranging from 12 to 70 microV; in most subjects, the N45 potential could be identified in single EEG traces. Spectral analysis revealed that single-pulse TMS induced a brief period of synchronized activity in the beta range (15-30 Hz) in the vicinity of the stimulation site; again, this oscillatory response was apparent not only in the EEG averages but also in single traces. Both the N45 and the oscillatory response were lower in amplitude in the 12-ms (but not 3-ms) paired-pulse trials, compared with the single-pulse trials. These findings are consistent with the possibility that TMS applied to M1 induces transient synchronization of spontaneous activity of cortical neurons within the 15- to 30-Hz frequency range. As such, they corroborate previous studies of cortical oscillations in the motor cortex and point to the potential of the combined TMS/EEG approach for further investigations of cortical rhythms in the human brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alpha-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study.

The effects of repetitive transcranial magnetic stimulation (rTMS) on cortical excitability are usually inferred from indirect indexes, such as EMG responses. It has now become possible to directly evaluate rTMS impact by means of concurrent EEG recording. The aim of this study was to examine the modulation induced by high frequency rTMS (20 Hz) over left primary motor cortex on the ongoing osc...

متن کامل

Time - frequency analysis of short - lasting modulation of EEG induced by intracortical 1 and transcallosal paired TMS over motor areas

27 Dynamic changes in spontaneous electroencephalogram (EEG) rhythms can be seen to occur 28 with a high rate of variability. An innovative method to study brain function is by triggering 29 oscillatory brain activity with transcranial magnetic stimulation (TMS). EEG-TMS 30 coregistration was performed on five healthy subjects during a one-day experimental session 31 that involved four steps: b...

متن کامل

Modulation of cortical oscillatory activity during transcranial magnetic stimulation.

Transcranial magnetic stimulation (TMS) can transiently modulate cortical excitability, with a net effect depending on the stimulation frequency (< or =1 Hz inhibition vs. > or =5 Hz facilitation, at least for the motor cortex). This possibility has generated interest in experiments aiming to improve deficits in clinical settings, as well as deficits in the cognitive domain. The aim of the pres...

متن کامل

Time-frequency analysis of short-lasting modulation of EEG induced by intracortical and transcallosal paired TMS over motor areas.

Dynamic changes in spontaneous electroencephalogram (EEG) rhythms can be seen to occur with a high rate of variability. An innovative method to study brain function is by triggering oscillatory brain activity with transcranial magnetic stimulation (TMS). EEG-TMS coregistration was performed on five healthy subjects during a 1-day experimental session that involved four steps: baseline acquisiti...

متن کامل

Prediction of the response to repetitive transcranial magnetic stimulation by spectral powers of prefrontal regions of brain.

Introduction: Quantitative assessments of the effects induced by repetitive transcranial magnetic stimulation (rTMS) are crucial to develop more efficient and personalized treatments. Objectives: To determine the spectral powers of different subbands of EEG correlated with treatment response to rTMS.   Materials and Methods: the spectral powers of different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 86 4  شماره 

صفحات  -

تاریخ انتشار 2001